Laser nanosurgery of single microtubules reveals location-dependent depolymerization rates.
نویسندگان
چکیده
In this study, 532-nm picosecond and 800-nm femtosecond lasers are used in combination with fluorescently labeled tubulin to further elucidate microtubule depolymerization and the effect lasers may have on the resulting depolymerization. Depolymerization rates of targeted single microtubules are dependent on location with respect to the nucleus. Microtubules located near the nucleus exhibit a significantly faster depolymerization rate when compared to microtubule depolymerization rates near the periphery of the cell. Microtubules cut with the femtosecond laser depolymerize at a slower rate than unirradiated controls (p=0.002), whereas those cut with the picosecond laser depolymerize at the same rate as unirradiated controls (p=0.704). Our results demonstrate the ability of both the picosecond and femtosecond lasers to cut individual microtubules. The differences between the two ablation results are discussed.
منابع مشابه
Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope.
We use near-IR femtosecond laser pulses for a combination of microscopy and nanosurgery on fluorescently labeled structures within living cells. Three-dimensional reconstructions of microtubule structures tagged with green fluorescent protein (GFP) are made during different phases of the cell cycle. Further, the microtubules are dissected using the same laser beam but with a higher laser power ...
متن کاملSingle-Particle Tracking Reveals a Dynamic Role of Actin Filaments in Assisting Long-Range Axonal Transport in Neurons
Here, we demonstrated that actin filaments mediate axonal transport in dorsal root ganglia (DRG) neurons using fluorescence single-particle tracking. We employed a compartmentalized microfluidic cell culturing chamber that allows depolymerization of actin filaments within an axonal segment. We observed that local actin depolymerization results in a two-fold increase in the average pausing durat...
متن کاملInfluence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery
Femtosecond (fs) laser-based intracellular nanosurgery has become an important tool in cell biology, albeit the mechanisms in the so-called low-density plasma regime are largely unknown. Previous calculations of free-electron densities for intracellular surgery used water as a model substance for biological media and neglected the presence of dye and biomolecules. In addition, it is still uncle...
متن کاملIntracellular nanosurgery and cell enucleation using a picosecond laser.
Living cells are highly organized in space and time, which makes spatially and temporally confined manipulations an indispensable tool in cell biology. Laser-based nanosurgery is an elegant method that allows precise ablation of intracellular structures. Here, we show cutting of fluorescently labelled microtubules and mitotic spindles in fission yeast, performed with a picosecond laser coupled ...
متن کاملEncounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior.
Ordered cortical microtubule arrays are essential for normal plant morphogenesis, but how these arrays form is unclear. The dynamics of individual cortical microtubules are stochastic and cannot fully account for the observed order; however, using tobacco (Nicotiana tabacum) cells expressing either the MBD-DsRed (microtubule binding domain of the mammalian MAP4 fused to the Discosoma sp red flu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2007